
MA 3046 - Matrix Analysis
Floating-Point Numbers and Machine Accuracy

The Floating Point Representation

It is a well-known fact that every real number can be represented in decimal form,
although often doing so may require an infinite number of digits. For example:

21 7
16

= 21.4375
71

3 = 7.3333 . . . .

Alternatively, we can use (decimal) scientific notation to uniquely represent every real
number in the form:

x = ± . a1a2 . . . anan+1 . . .× 10s

where, unless x = 0,
1 ≤ a1 ≤ 9

and
0 ≤ ai ≤ 9 , i = 2, 3, . . .

For example:
21 7

16 = .214375× 102 .

Moreover, an equivalent number system can be constructed based on, instead of 10, any
positive integer ≥ 2. In other words, every real number can be expressed:

x = ± . d1d2 . . . dndn+1 . . . × βs ,

where β (≥ 2) is called the base, the digits d1d2 . . . dndn+1 . . . are called the mantissa and s
is called the exponent. In this case the digits of the mantissa satisfy

1 ≤ d1 ≤ β − 1
(again unless x = 0) and

0 ≤ di ≤ β − 1 , i = 2, 3, . . . ,

Thus, for example, in base 2,

21 7
16 = 16 + 4 + 1 + 1

4 + 1
8 + 1

16

= 1 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20

+ 0 × 2−1 + 1 × 2−2 + 1 × 2−3 + 1 × 2−4

= +10101 . 0111 b

= (+ . 101010111 × 25)b ,

where ( )b denotes a binary number. (Note that binary representation has one unique
feature. Unless x = 0, the leading digit (d1) is always equal to 1. We shall see later that
this has some interesting consequences!)
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The key difference between the theoretical representation of real numbers in scientific
form and the reality of electronic computers is that a computer must utilize a unique
location in its memory to store each digit of a number, and therefore real computers cannot
store the infinite number of digits necessary to exactly represent most real numbers. Thus,
real computers generally store, instead of the “true ”real number, the “closest” real number
that can be represented by some fixed number of digits. (On any given computer, the
base (β) and number of digits used to represent real numbers are generally predetermined
by a combination of hardware and software (e.g. FORTRAN) design choices.) We call this
form the normalized floating point representation of x , and denote it as:

fl(x) = ± . d1d2 . . . d̃n × βs .

In this representation, d1 is referred to as the most significant digit, and d̃n as the least
significant digit. It is rather easy to show that floating point representation allows precisely
[2(β − 1)βn−1 + 1] different values for the significant digits (mantissa). Therefore, in
general:

x 6= fl(x) .

In order to form fl(x), i.e. to determine the “closest” floating point number to a given
real number x, most computers use one of two methods:

(1) Let d̃n = dn and simply ignore the digits dn+1dn+2 . . . . This is called chopping.
(2) Let d̃n = dn + 1 if dn+1 ≥ β

2 , otherwise chop. This is called rounding.
Thus, for example, in a four-digit computer using base 10,

21 7
16

=
{

.2143 × 102 (chopped) ,

.2144 × 102 (rounded) .

For most of the remainder of our examples, we shall use β = 10 because of its famil-
iarity and ease of hand computation. However, most computers actually use bases other
than 10, the most common being 2 (binary), 8 (octal) and 16 (hexadecimal). (Single
precision FORTRAN on IBM mainframes uses β = 16 and n = 6. By contrast, most UNIX
workstations use β = 2 and n = 33 for single precision.)

We would close this section by noting three other seemingly minor, but really rather
important points, that many textbooks do not cleanly address. The first is that, in floating
point representation, leading zeros are irrelevant, but trailing zeros are important. For ex-
ample, the numbers .2143 × 102 and .002143 × 104 are equivalent (and virtually every
existing computer would immediately convert the second to the first), but .2143 × 102

and .214300 × 102 are not, since the first implies (in a chopping machine) a floating
point number for which

21.43 ≤ fl(x) < 21.44

while the second implies that the floating point number satisfies

21.43 ≤ fl(x) < 21.4301

The second important point is that there is no a priori relationship between the number
of digits in a normalized floating point number and the number of digits after the decimal
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point when that number is written in standard form. Specifically, for example, 0.3333
and 7.3333 are both accurate to four decimal places, but the second implies the use of a
five-digit accurate floating point machine, while the first only implies a four-digit accurate
one.

Lastly, a number which requires only a finite number of non-zero digits to exactly
represent in one base may require an infinite number in another. This can easily lead to
somewhat unexpected results. For example, in either base 2 or 16, the real number x = 1

10
is not expressible exactly as a floating point number. Thus, in a hexadecimal computer, a
DO loop like:

DELTA = 0.1
DO 10 I = 1,1000

X = X + DELTA
. . .

will not end with the value X = 100 !!!!

Measuring Errors

A principal aspect of numerical analysis is the quantitative consideration of the errors
which arise due to floating point representation. If fact, for reasons we shall discuss shortly,
error analysis actually involves the consideration of several different measures of error. We
shall illustrate the most commonly used of these by considering the error involved in simply
approximating a given real number by the closest floating point number. The (actual) error
(which we generally call just the error) is:

x − fl(x) .

In may cases, however, this value is not especially illuminating. For example, the same
actual error arises with either:

fl(1) = 1001 = +.1001 × 104 ,

or
fl(999, 000) = 1, 000, 000 = .1 × 107 .

Clearly, in many contexts (e.g. financial), most reasonable people would not accept these
as being equally accurate. Thus, it is often more relevant to speak of the relative error

x − fl(x)
x

, x 6= 0 .

(Note that neither of these two measures is it inherently better - they are simply two parts
of the same puzzle. Relative error, for example, frequently provides only limitedly useful
information when x is close to zero.)

Unfortunately, with the exception of highly artificial textbook or classroom examples,
there exist few, if any “real” problems where either the actual error or the relative error
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are known, or even computable. In fact often even their algebraic signs are unknown! The
best that one can generally do is to estimate their magnitude. Therefore, error analysis
also frequently involves the absolute values of the two quantities above, i.e. the absolute
error:

|x − fl(x)|

and absolute relative error: ∣∣∣∣
x − fl(x)

x

∣∣∣∣ .

(Note that these last two measures correspond precisely those traditionally used to report
experimental results, e.g. when we write either

x = .3152 ± .0005 ,

or
x = .3152 ± .16% . )

Moreover, note that the definition of relative error implies the alternate, but equiva-
lent, statement about floating point representation:

fl(x) = x(1 + δ) .

Lastly, it is fairly easily shown that the relative error in converting x to fl(x) satisfies:

|δ| ≤
{

β1−n (chopping architecture)
1
2
β1−n (rounding architecture) .

In any given computer, the quantity on the right hand side of this expression is commonly
referred to as the machine precision of that computer, and, as is easily seen, is a function
of both the base and the number of significant digits retained. Machine precision is a
fundamental concept in numerical analysis. It expresses, in one sense, the “best case”
behavior of a given machine, i.e. while a particular computation may produce an answer
that is more accurate than machine precision, you never have a right to expect that.

Errors and Arithmetic Operations

Of course, a computer which did nothing but read in a real number x, convert it to
floating point form, fl(x), and output the result would be of little practical interest. The
main strength of the digital computer is its ability to perform (many) arithmetic operations
very rapidly. Thus, the more interesting and relevant issue is what impact does the floating
point representation of real numbers have on familiar arithmetic operations? As we now
show, the answer depends greatly on which operation we are talking about.
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The consequences of using floating point numbers for multiplication are the easiest
to analyze. Suppose, for example, a hypothetical computer were to try to calculate (xy),
using rounding arithmetic. The computer would first have to form the two numbers:

fl(x) = x(1 + δ1) , |δ1| ≤ 1
2β1−n

fl(y) = y(1 + δ2) , |δ2| ≤ 1
2β1−n ,

each of which would be in theory n digits long. Next, the computer would form the product

fl(x) · fl(y) ,

which could (theoretically) be up to a 2n digit number. (Many computers have so-called
double length accumulators, which allow this product to be formed without error.) But
then, to store the result, the computer would first have convert it to n digits. This
conversion would introduce another error, on the order of machine precision. We can
summarize the above discussion in terms of the following formula, which expresses what
is actually stored as the computed value for xy,

fl(fl(x) · fl(y)) = fl(x)fl(y)(1 + δ3) , |δ3| ≤ 1
2β1−n .

Thus, instead of xy, the computer actually has stored:

fl(x)fl(y)(1 + δ3)
xy(1 + δ1)(1 + δ2)(1 + δ3)

.= xy(1 + δ1 + δ2 + δ3)
= xy(1 + δm) , |δm| ≤ 3

2β1−n .

But this implies that δm is of effectively the same order of magnitude as machine precision.
Therefore we claim that multiplication does not generally significantly distort the relative
error. A basically similar result can be shown for division.

However, the situation with addition and subtraction is not nearly as clean. The
difficulty with these operations is that before two numbers can be added or subtracted,
they must first be rearranged so that both have the same exponent. (This is why the old
slide rule was only useful for multiplication and division.) In a computer, this alignment can
usually only be accomplished by shifting the significant digits of the smaller (in magnitude)
of the two numbers to the right, inserting leading zeros and chopping or rounding the
trailing digits so the overall length of the number remains unchanged. For example,

.2157 × 103 → .2157 × 103

+ .3024 × 102 → + .0302 × 103

.2459 × 103

While a detailed analysis similar to that for multiplication can also be conducted here,
it is really not necessary, because it should be obvious that for addition, as long as both
numbers have the same algebraic sign, the error introduced by the right-shifting occurs only
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in the least significant digit of the result, and therefore cannot significantly exceed machine
precision. Therefore, we can conclude that addition of two floating-point numbers with
the same algebraic sign is numerically “safe.”

Unfortunately, the same conclusion cannot necessarily be drawn for subtraction (or
for the addition of two numbers with differing algebraic signs), as the following example,
again in a four-digit chopping decimal machine, illustrates:

21.374 → .2137 × 102

− 21.366 → − .2136 × 102

.008 = .8000 × 10−2 .0001 × 102 = .1000 × 10−1

The relative error here is significantly above machine precision. The “problem” of course
should be fairly obvious - because of the cancellation, the least significant digits of the
original numbers have in fact become the most significant digits of the result. In a signal
processing sense, if we think of the most significant digits of a number as representing the
“signal,” and the least significant digits as somewhat analogous to the numerical “noise,”
what has occurred in this calculation is that the “signal” has been almost totally canceled
out, and the resulting value is almost pure “noise.” (Obviously, not every subtraction
will result in a situation this extreme. But such behavior is possible at any time.)
This phenomenon, when it occurs, is commonly referred to as catastrophic cancellation.
Catastrophic cancellation represents perhaps the single most significant potential drawback
in numerical computation.

Unfortunately for computer calculation, there is generally no way to recover from
catastrophic cancellation once it has occurred. Therefore, most practical numerical strate-
gies involve a combination of:

(1) Prevention, i.e. the use, as much as possible, of “good” numerical procedures
which will, ahead of time, minimize the possibility of a catastrophic cancellation
calculation occurring, and

(2) Identification, i.e. the use of numerical procedures which will at least after the fact
warn the user that a result may have been significantly degraded by cancellation
errors, and therefore is not to be trusted.

Preventative measures generally involving reformulating calculations, by using expres-
sions which, while mathematically equivalent, are not numerically equivalent. For example,
because we have shown division is numerically “safer” than subtraction, it is almost always
preferable that “small” numbers be computed not by the subtraction of two nearly equal
quantities, but instead by the division of a “small” quantity by a “large” one. Therefore,
while the expressions: √

x + 1 −
√

x

and
1√

x + 1 +
√

x

are algebraically equivalent, the second is clearly numerically superior when x is large
relative to unity.
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Unfortunately, strategies for identifying when catastrophic cancellation has occurred
tend to be more method-specific, and therefore will be discussed in more detail in the
context of appropriate methods. Furthermore, even when such strategies exist, they usually
only indicate, after the fact, that catastrophic cancellation has occurred. But by that time,
whatever numbers remain are almost total “noise,” and it is almost impossible to recover
any significant digits. The only choice is to go back, try and reformulate the problem into
a more numerically stable form, and rerun it.

Another important aspect of floating point computer arithmetic is that most of the
familiar “rules” of arithmetic generally fail to hold in the exact sense. For example, most
of the time

[fl(x) + fl(y)] + fl(z) 6= fl(x) + [fl(y) + fl(z)] , etc.

Even more intriguing is the fact that, due to differences in the way computer software is
written, the same expression, evaluated on two different computers may yield different
results, even when both use the same floating point representation. (Although, if both
expressions used numerically “safe” calculations, we would not expect these results to differ
by significantly more than machine precision!)

One final area where errors due to floating point representation may have significant
consequences is in the numerical evaluation of functions. Specifically, there are almost
always two basic sources of floating-point errors when functions are evaluated:

(1) The functions must, in general, be calculated, e.g. when e−x is approximated by
the Taylor Series:

e−x = 1 − x +
x2

2!
− x3

3!
+ · · ·

and this calculation process may introduce exactly the kind of arithmetic errors
described above. (We would note that, for reasons beyond our discussion here, the
Taylor series turns out not to be a smart way to do this particular calculation.)

(2) Even if the arithmetic operations were able to be performed without error, we
would still, in general, be computing not F (x), but in reality F (fl(x)).

The second of these two effects may be further investigated by considering the absolute
value of the relative error that arises due solely due to replacing x by fl(x):

∣∣∣∣
F (x) − F (fl(x))

F (x)

∣∣∣∣ ≡
|F (x) − F (x(1 + δ))|

F (x)

=
∣∣∣∣
F (x) − F (x + δx)

δx

δx

F (x)

∣∣∣∣

=
∣∣∣∣F ′(ζ)

x

F (x)

∣∣∣∣|δ| .

(The last equation results from the application of the mean value theorem for the derivative,
and ζ is some point between x and x + δx.) But a close inspection of this last formula
clearly indicates that the resulting relative error is equal to machine precision multiplied

7



by another factor. (In engineering terminology, this multiplying factor might be referred
to as the gain of the procedure.) Moreover, this factor may be large, and therefore the
computed function value may be significantly in error (relative to machine precision), if
any one (or more) of the following are true:

(1) x is “large,”
(2) F ′(x) is “large,” or
(3) F (x) is “small.”

(Actually, function evaluations usually involve one further important source of errors,
although one not related to floating point representation. These errors arise because many
functions, e.g. sin(x) and ex are transcendental, i.e. their values can in general only be
exactly calculated by the Taylor Series, e.g.

ex = 1 + x +
x2

2!
+

x3

3!
+ · · ·

Therefore, in practice such infinite series are replaced by appropriate approximations, e.g.
truncated partial sums. We shall have further occasion to study this latter type of errors
in this course.)

The IEEE Floating Point Representation

As noted above, the IEEE floating point representation of the number x , which is
used in most UNIX workstations is:

fl(x) = ± d1 . d2d3 . . . dn × βs ,

where β is two (binary), and, unless x = 0, the leading digit (d1) equals one. Therefore, in
these machine, only the digits d2, d3 . . . , dn are actually stored. Representation of a single
precision real floating point number requires 32 bits, while 64 are used for double precision
real numbers. The leading bit always represents the sign of the number ( “0” if the number
is positive, and “1” if it’s negative). The next eight bits (eleven for double precision) store
the so-called biased exponent, s+127 (s+1023 for double precision). The remaining digits
(twenty-three for single precision and fifty-two for double) are for the mantissa or fraction
of the floating point number. (Because the leading significant digit, d1, is not stored, the
effective accuracy of IEEE numbers is actually one digit more than the number stored, i.e.
twenty-four binary digits for single precision and fifty-three for double. )

Thus, for IEEE single precision, the digits satisfy:

d1 = 1

0 ≤ di ≤ 1, 2 ≤ i ≤ 24 ,

−128 ≤ s ≤ 127 .
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(We generally express the resulting representation, however, as eight hexadecimal (β = 16)
digits, rather than thirty-two binary ones. Note that in hexadecimal, 10 = a, 11 = b ,
etc.)

The actual conversion from decimal to binary is fairly tedious, since it involves re-
peated division and subtraction. For example, to convert:

π = 3.141592654 . . .

to hexadecimal, we start the largest power of 2 that is smaller than the given number (in
this case 2). (This serves to define the exponent.) Then, we find the corresponding digit
by dividing the full number by two raised to that power, and discarding the remainder, i.e.

π/2 = 1.57 ⇒ d1 = 1 and s = 1 ,

(This leading digit, of course, will not be stored in the actual representation of the number.)
Subtracting 21 from π leaves the remainder:

1.141592654 . . .

which is then divided by the next lower power of 2, i.e. 20 , and the remainder again
discarded. The resulting integer part (if any) becomes d2, the first binary digit actually
stored. Then, subtracting this digit from the original remainder leaves us with the new
remainder

0.141592654 .

This new remainder is now divided by 2−1, then chopped to yield the next digit, i.e.:

.141592564÷ 2−1 = .2831853 . . . ⇒ d3 = 0 ,

and the process continues. The final result is:

π = 3.141592654 . . . = ( +1.10010010000111111011011 . . .× 21)2 .

(As noted before, the twenty-three bits to the right of the decimal are the only portion of
the mantissa we’ll actually store in the computer representation of π.)

To finish determining how π will be stored in single precision, we note that the expo-
nent in this case satisfies

s + 127 = 1 + 127 = 128 = (10000000)2

and the leading (sign) bit will be a zero since π is positive. Therefore, starting with (0),
appending first the eight bits for the biased exponent (10000000)2, and then the remaining
twenty-three bits of the mantissa, we see that we can write the IEEE single-precision
machine representation of π as

0︸︷︷︸
sign

10000000︸ ︷︷ ︸
exponent

10010010000111111011011︸ ︷︷ ︸
mantissa

.
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Partitioning this into four bit hexadecimal digits yields

0100︸︷︷︸
4

0000︸︷︷︸
0

0100︸︷︷︸
4

1001︸︷︷︸
9

0000︸︷︷︸
0

1111︸︷︷︸
f

1101︸︷︷︸
d

1011︸︷︷︸
b

,

or in “hex” digit form:
fl(π) = 40490fdb .

(On some machines this displays only in upper-case letters, i.e. as 40490FDB .)

The storage of other numerical variables, e.g. double precision and quadruple pre-
cision, follows a similar pattern to the storage of a single precision real numbers, except
the additional length is used to accommodate more significant digits and a larger range of
exponents.

The representation of positive integer variables is much cleaner. A positive integer is
represented by first converting the integer to a (maximum) thirty-one bit binary number,
then appending the sign bit (0) to the front, thus creating a thirty-two bit number, which
in turn can be converted into eight four-bit hexadecimal digits. Thus, for example, with
the sign bit appended to the front:

293 = (100100101)2 = (0000000000000000000000100100101)2

which then segments as:

0000︸︷︷︸
0

0000︸︷︷︸
0

0000︸︷︷︸
0

0000︸︷︷︸
0

0000︸︷︷︸
0

0001︸︷︷︸
1

0010︸︷︷︸
2

0101︸︷︷︸
5

,

or 00000125 is the hexadecimal IEEE stored form of 293 . (The storage of negative
integers is not so clean, and involves the concept of twos complement arithmetic.)
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